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Abstract—Lithography hotspot detection plays a crucial role
in the design-for-manufacturing (DFM) process. Recent devel-
opments in machine learning have demonstrated significant
advantages in improving feature extraction capabilities, computa-
tional efficiency, and reducing false alarms in hotspot detection.
However, deep learning models remain black-box approaches,
with the interpretability challenge yet to be addressed. The topo-
logical features of the local patterns causing hotspot classification
results also remain unknown. In this paper, we propose the first
interpretable GNN framework for lithography hotspot detec-
tion, which achieves both high detection accuracy and precise
hotspot localization within the layout. Our framework maps
the geometric structure of layouts into graph representation.
Then, we introduce a novel graph attention network (GAT)
framework, encoding local topological features through attention
queries on neighbors. Additionally, a novel graph interpretability
method is designed by leveraging latent variables in edge dis-
tributions and subgraphs optimization, enabling the extraction
of local topological features and providing detailed explanations
of hotspot localization. Experimental results demonstrate that
our approach achieves state-of-the-art (SOTA) performance on
the ICCAD-2012 and ICCAD-2019 benchmarks. Moreover, we
validate the interpretability of our GNN model on the ICCAD-
2016 benchmark, accurately identifying hotspot locations within
the lithographic design.

Index Terms—Design For Manufacturability, Lithography
Hotspot Detection, Graph Neural Networks, Interpretable AI

I. INTRODUCTION

As Very-Large-Scale Integration (VLSI) technology contin-
ues to advance, the feature sizes in chip designs are shrinking,
making lithographic process errors more significant. Lithog-
raphy hotspot detection becomes particularly crucial at the
design stage, enabling the early identification and prevention
of potential printing defects to reduce manufacturing costs.
Early detection methods, such as lithography simulation [1],
[2], offer high accuracy but are computationally intensive and
time-consuming. Pattern-matching methods [3], [4] are highly
effective at identifying patterns already present in the hotspot
library, but they exhibit limited generalization ability.

With the development of AI technology, Machine Learn-
ing (ML)-based hotspot detection methods [5]–[7], especially
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Fig. 1. Our Interpretability Results on a hotspot sample. (a) An input GDS
layout. The warning polygon components in (b) indicate the layout structures
that are likely to cause hotspots locationally. (c) The hotspot ground truth
from ICCAD-2016 contest through EUV lithography simulation.

those based on Deep Learning (DL) [8], [9], [11], [12],
[16], [17], have made significant improvements in detection
efficiency, accuracy, and generalization capabilities. CNN-
based detection methods [5], [8], [9], [11] apply spatial feature
transformations to layout clip images, which are subsequently
fed into convolutional network layers for feature extraction.
Sequence-based detection methods [13], utilizing Transformer
architectures, capture spatial or structural patterns in layout
data to effectively detect hotspots by analyzing sequential or
contextual relationships. However, these methods, which use
clip images as input, face the issue of data sparsity. Moreover,
they lack the ability to model the topological features of
lithographic layouts.

In contrast, Graph Neural Network [14], [15] (GNN)-based
hotspot detection methods stand out due to their robust ability
to extract topological features. GNN-based detection meth-
ods encode the layout into a graph representation, allowing
more effective extraction of topological features through the
aggregation and updating of node information. Sun et al.
[16] proposed a new graph representation method for layout
patterns, designed rich node and edge features, and introduced
a modified GNN framework with multi-type edges. Yan et
al. [17] proposed a lightweight 3-hop message-passing GNN
framework based on the Modified Transitive Closure Graph
(MTCG). Their method significantly reduces false alarms
while achieving high accuracy [16]. Moreover, the graph-based
layout data significantly lowers storage and computational



costs, demonstrating high potential for practical applications.
However, these DL-based methods lack interpretability in

the detection results and fail to adequately address the features
of hotspot patterns. DL-based hotspot detection methods are
typically considered black-box approaches [22]. Most existing
frameworks treat hotspot detection as a classification task for
layout clips, neither localizing the specific areas responsible
for hotspots nor explaining what kinds of local topological
features contribute to them. Only Sun et al. [18] and Jiang
et al. [19] have provided CNN-based interpretability results.
However, CNN-based hotspot explainers suffer from lower
detection accuracy, and the coverage of the heatmaps they
generate often exceeds the actual hotspot positions, resulting
in higher computational costs.

In this work, we pioneeringly introduce an improved Graph
Attention (GAT)-based detection flow and GNN interpretabil-
ity into the field of lithography hotspot detection. Our feature
extraction architecture encodes layout geometric information
through rich aggregation operations, with a multi-head GAT
mechanism introduced to capture the interactions among local
pattern polygons. Our graph interpretability module utilizes the
latent variable distribution of edge features from the feature
extraction framework to backpropagate through and optimize
the subgraph. Finally, the subgraph is optimized to precisely
locate the local patterns responsible for hotspot classification
results.

The main contributions of this paper are as follow:

• We propose the first Interpretable GNN framework for
lithography hotspot detection, which accurately localizes
the patterns responsible for hotspot formation in layouts,
providing local topological interpretability for GNN-
based detection flows.

• We present a novel GDS2Graph representation method
that emphasizes both the geometric properties of pattern
polygons and the topological features of their neighboring
structures.

• We propose a novel GAT feature extraction framework
that encodes simple geometric features of input layout
clips into a rich graph topological feature space, pro-
viding robust feature embeddings for subsequent hotspot
detection and interpretability modules.

• In the ICCAD-2012, ICCAD-2016 and ICCAD-2019
benchmarks, our hotspot detection framework achieves
state-of-the-art performance in both accuracy and false
alarm rates. Furthermore, we present both visualized
and quantitative interpretability results on the ICCAD-
2016 dataset, demonstrating our framework’s superior
detection accuracy and interpretability capabilities.

II. PRELIMINARIES

To assess the hotspot detection performance of our proposed
framework, we define the hotspot classification task.

Problem 1 (Hotspot Detection): This is a binary classifi-
cation problem. Given a collection of clip patterns labeled as
hotspots and non-hotspots, our goal is to train a classification

model that maximizes accuracy (Acc) and minimizes false
alarms (FA). The evaluation metrics are defined as follows:

Definition 1 (Acc): The proportion of correctly predicted
hotspot samples out of all hotspot (HS) samples.

Definition 2 (FA): The proportion of non-hotspot (NHS)
samples incorrectly classified as hotspots.

To evaluate the interpretability task, we define the graph-
based hotspot interpretability problem.

Problem 2 (Interpretability): For each pattern, graph-level
interpretability aims to identify subgraphs that are crucial for
the hotspot classification results, corresponding to the local
pattern polygons responsible for the hotspot. The objective
of the interpretability task is to maximize the interpretability
hotspot accuracy (HA) and minimize the false positive rate
(FPR), which are defined as follows:

Definition 3 (HA): The proportion of rectangular compo-
nents from pattern polygons that are correctly interpreted as
hotspots, relative to the total number of hotspot regions.

Definition 4 (FPR): The proportion of rectangular compo-
nents from pattern polygons that are incorrectly interpreted as
hotspots, relative to the total number of non-hotspot regions.

The details of the hotspot detection and interpretability
experiments are provided in Section V. Additionally, we
provide visualized results demonstrating the interpretability of
hotspot detection.

III. PROPOSED METHOD

An overview of our interpretable GAT-based lithographic
hotspot detection framework is presented in Figure 3. Firstly,
we introduce a novel GDS2graph lithographic layout repre-
sentation method, along with a detailed explanation of the en-
coding approach for geometric features. Secondly, we present
the proposed novel graph attention-based feature extraction
framework. Lastly, we pioneeringly emphasize a GNN inter-
pretability method for hotspot detection.

A. GDS2graph Representation

The GDS2graph representation method projects the vo-
luminous GDS information into a compact graph structure,
reducing storage requirements while preserving the layout’s
geometric information. Figure 2 illustrates our graph represen-
tation method using a GDS layout clip example. We denote
a graph as G = (V,E), where V represents the set of nodes
and E represents the set of edges.

First, we perform rectangular partitioning of the polygons to
construct the nodes, where each rectangle is treated as a node.
Subsequently, each rectangle is assigned features based on its
intrinsic properties and the geometric relationships with its
local neighbors. The length l and width w serve as the simplest
intrinsic properties of each rectangle. The minimum neighbor
distance represents the shortest straight-line distance between
a node and its neighboring rectangles. The coordinates x and y
of the rectangle are used for visualization and interpretability.

Finally, we design edge connection rules among the rect-
angles, considering that adjacent polygons may contribute
to hotspots. On the one hand, nodes belonging to different



Fig. 2. Proposed graph representation method. (a) A layout sample. (b)
Node representation with rectangular segmentation for polygons. (c) Edge
connections. (d) Description of the specific node feature creation method.

polygons will be connected if (1) they are neighbors and
(2) the neighbor distance is less than a threshold t, which
is determined by the feature size of the technology. On the
other hand, to ensure the graph’s connectivity, nodes within the
same polygon are connected by edges. Independent polygons
are also connected to the main graph.

B. GNN Feature Extraction Framework

Considering the importance of local topological features in
lithography hotspot detection, we propose a graph attention-
based feature extraction approach to uncover high-level topo-
logical features of the layout. As illustrated in Figure 3.(b), our
feature extractor is designed with a rich aggregation structure.
The Graph Attention mechanism is introduced to better focus
on the interactions within the neighboring nodes in the layout.
The detailed steps are presented in Algorithm 1.

With the GDS graph structure embedding, we use the
adjacency matrix A and the set of node features h =
{h1, h2, . . . , hN}, where hi ∈ RF1 as input. In our framework,
the node feature hi represents the initial feature vector for
each node (corresponding to a region in the layout polygons)
and contains the basic information of the node. For node
i, the interactions with its neighboring nodes j ∈ Ni are
first calculated by concatenating the features, which are then
passed through MLPs. Next, the neighbor edge features ei are
computed using the neighbor concatenation operation fedge(·)
with element-wise max. The aggregated feature Hi for node
i is computed by combining the node’s own feature and its
edge features with the aggregation operation faggr(·):

faggr = σ(A ((MLP2(hi), eij))). (1)

Then, node feature set is updated to H = {H1,H2, . . . ,HN},
Hi ∈ RF2 .

After that, the graph attention mechanism is introduced to
aggregate local topological feature by combining the node’s
own feature and its neighbor polygon features. For node i and
its set of neighboring nodes Ni, the core of Graph Attention is

Algorithm 1 Graph Attention-based Feature Extraction
Require: Graph structure G(V,E), adjacency matrix A ∈

RN×N , initial node features h = {h1, h2, . . . , hN}, where
hi ∈ RF1 , neighbor set of node i: Ni.

Ensure: Latent node features h′ = {h ′
1, h

′
2, . . . , h

′
N}, where

h ′
i ∈ RF ′

.
1: for each node i ∈ V do
2: for each node j ∈ Ni do
3: e

(1)
ij = fconcat(hi, hj)

4: e
(2)
ij = MLP1(e

(1)
ij )

5: end for
6: ei = fedge

(
maxj∈Ni{e

(2)
ij | ∀j ∈ Ni}

)
7: Hi = faggr (MLP2(hi), ei) ,∀j ∈ Ni

8: for k = 1 to K do
9: for each node j ∈ Ni do

10: αij = GAT(Hi,MLP3(Hj))
11: end for
12: h(k)′

i = σ
(∑

j∈Ni
αijWHj

)
13: end for
14: h ′

i = fconcat(h
(k)′

i), k = 1, 2, . . . ,K
15: end for
16: return h′

to compute the attention score αij for each neighboring node
with respect to node i:

αij =
exp

(
LeakyReLU

(
aT [WHi ∥ WHj ]

))∑
k∈Ni

exp (LeakyReLU (aT [WHi ∥ WHk]))
, (2)

where a : RF ′ × RF ′ → R is a parameterized single-layer
feedforward neural network. Both a ∈ R2F ′

and W ∈ RF ′×F

are parameter matrices for linear transformations. The sym-
bol ∥ denotes the concatenation operation. In computing the
attention scores, a softmax function is applied to ensure that
the attention scores are suitable for global node normalization.
Additionally, the LeakyReLU activation function is employed
to enhance the model’s nonlinear expressive capabilities.

The attention scores, serving as importance coefficients,
are applied during the aggregation step to update the feature
representation h′ = {h ′

1, h
′
2, . . . , h

′
N}, where h ′

i ∈ RF ′
for

each node. We introduce multi-head graph attention to aggre-
gate neighbor feature representations across K independent
channels:

h ′
i =

K

∥
k=1

σ(
∑
j∈Ni

αk
ijW

kh(k)
j), (3)

where h
(k)
j , j ∈ Ni stands for the k-th attention head output.

Each pass through the feature extraction layer involves the
aggregation and updating of neighborhood features for each
node.

Stacking multiple layers enables capturing a broader range
of interactions between nodes. The resulting node features are
subsequently used for downstream tasks, such as classification
and interpretability. In this way, we can focus attention on the



Fig. 3. Overview of the proposed Interpretable Graph Attention framework for Lithography Hotspot Detection.

neighboring polygon components that have a greater impact
on causing hotspots.

C. Graph Interpretability for Hotspot Detection
The graph-based interpretability framework enables node-

level analysis to identify critical subgraphs and topological fea-
tures responsible for hotspot polygons formation. As illustrated
in Figure 3.(c), we employ a neural-network-parameterized
probabilistic model to approximate the edge feature distri-
bution, facilitating effective learning of latent structures. Our
method builds upon assumptions from previous work, empha-
sizing the identification of critical subgraphs based on local
topology.

Assumption 1 (Gilbert Random Graph). In the subgraph
sampling process, we assume that the input graph G follows
a Gilbert random graph model:

P (G) =
∏

(i,j)∈E

P (eij), (4)

where E represents the set of edges in the graph G, and P (eij)
is the probability that the edge eij exists.

Assumption 2 (Edge Bernoulli Distribution). For each edge
eij , we assume that P (eij) follows a Bernoulli distribution
eij ∼ Bernoulli(θij), where θij ∈ [0, 1] represents the
probability of the existence of the edge between nodes i and
j.

These assumptions allow us to model the graph with edge
probabilities, which facilitates efficient subgraph sampling.
Additionally, these probabilistic assumptions serve as a simu-
lation of the inherent uncertainty in hotspot occurrence, cap-
turing the variations and unpredictability of hotspot patterns
in the layout.

Lemma 1 (Probability Approximation Property). In the
subgraph random sampling process, when approximating a

Bernoulli distribution of edges, the latent distribution of edge
weights êij ∈ (0, 1) is differentiable.

The objective function of our interpretability model is to
minimize the conditional entropy in order to obtain the latent
subgraphs that preserve the invariance of the output, where
the subgraphs correspond to the potential layout polygon
components that may cause hotspots.

min
Gs

H(Y0|G = Gs), (5)

where H represents the conditional entropy, and Y0 is the
original prediction, with the complete graph G as input. Gs

is a subgraph of G, and there are 2M possible subgraphs for
a graph with M edges. Enumeration is not adopted due to its
inefficiency and the inability to share across all instances.

Therefore, based on Assumption 1, we assume that the input
graph in the GNN interpretability model follows a Gilbert
random graph. With Assumption 2, the objective function can
be written as:

min
Gs

H(Y0|G = Gs) = min
Gs

EGs [H(Y0|G = Gs)]

≈ min
Θ

EGs∼q(Θ) [H(Y0|G = Gs)] ,
(6)

where q(Θ) represents the distribution of the subgraph Gs

parameterized by θ.
However, the interactions between polygons responsible for

local hotspots are not balanced. Therefore, we introduce a
parameterized probabilistic model to transform the binarized
Bernoulli distribution into a continuous distribution within the
range (0, 1). The subgraph sampling process Gs ∼ q(Θ) is
approximated by the function:

Gs ≈ Ĝs = fΩ(G0, τ, ε), (7)

with parameters Ω, temperature τ , and an independent random
variable ε.



TABLE I
PERFORMANCE COMPARISON ON ICCAD-2019 BENCHMARK WITH THE STATE-OF-THE-ART METHODS.

Benchmark TCAD’2020 [10] TODAES’2022 [32] DATE’2023 [30] GLSVLSI’2024 [31] TCAD’2025 [17] Ours

Acc(%) FA(%) Acc(%) FA(%) Acc(%) FA(%) Acc(%) FA(%) Acc(%) FA(%) Acc(%) FA(%)

ICCAD-2019-1 80.90 2.50 87.20 9.70 91.60 8.60 62.30 3.70 91.30 8.40 95.20 12.07
ICCAD-2019-2 89.80 83.90 90.30 84.10 90.50 83.90 84.30 64.20 94.60 81.80 88.43 15.71

Average 85.30 43.20 88.75 46.90 91.05 46.25 73.30 33.95 92.95 45.10 91.82 11.58

TABLE II
PERFORMANCE COMPARISON ON ICCAD-2012 BENCHMARK WITH THE

STATE-OF-THE-ART METHODS.

Method Acc(%) FA(%) Inference Time(s)

TODAES’2019 [28] 97.60 5.60 -
DAC’2021 [29] 98.25 6.10 -
DATE’2022 [16] 98.42 12.80 3.2
DATE’2023 [30] 96.20 6.40 7.5

GLSVLSI2024 [31] 88.30 0.20 103.4
TODAES’2025 [19] 98.10 4.00 6.5

Ours 98.47 7.44 2.9

According to Lemma 1, we replace the conditional entropy
with the cross-entropy loss H(Y0, Ŷs), where Ŷs represents the
predicted output given the subgraph Ĝs as input. Based on the
aforementioned conditions, we employ Monte Carlo methods
to approximate the optimization of the objective function.

min
Ω

Eε∼Uniform(0,1)

[
H(Y0, Ŷs)

]
= min

Ω
− 1

K

K∑
k=1

C∑
c=1

PΦ(Yc|G = Go) logPΦ(Yc|G = Ĝ(k)
s ),

(8)
where Yc stands for Y = c, Ω denotes the parameters
to be optimized, Φ represents the input parameters of the
parameterized feature extraction architecture, K is the number
of instances in the input graph, c is the number of predicted
labels, and Ĝ

(k)
s refers to the k-th predicted latent subgraph.

In addition, within the optimized parameters Ω =
gΨ(Go, Z), this interpretability method is capable of providing
latent subgraph explanations for all instances in the input data.
The objective function can be expressed as:

min
Ψ

−
∑
i∈I

K∑
k=1

C∑
c=1

PΦ(Yc|G = G(i)
o ) logPΦ(Yc|G = Ĝ(i,k)

s ),

(9)
where Z represents the input graph structure and node fea-
ture embeddings from our proposed methods in the previous
sections. Ψ denotes the shared parameters within the network.
G(i) is the input graph and Ĝ

(i,k)
s is the k-th sampled graph.

By learning from a dataset containing a sufficient number of
hotspot samples, we could achieve locational interpretability,
precisely identifying the polygon components responsible for
hotspots represented by subgraph output.

Fig. 4. Performance Comparison on ICCAD-2016 benchmark with the state-
of-the-art methods.

Fig. 5. Ablation study on ICCAD-2012 benchmark.

D. Benchmarks Information

For the hotspot detection classification task, we test our
framework on layout clips from the 28nm process node in
the ICCAD-2012 benchmark [20]. To mitigate severe class
imbalance, we applied vertical and horizontal flips to hotspot
samples in the training set, preserving their geometric proper-
ties. Besides, we adopt the more challenging ICCAD-2019
benchmark [21], which contains more Truly Never-Seen-
Before and Hard-To-Classify patterns in the test set.

For the hotspot interpretability task, we adopt an unsuper-
vised approach, using unlabeled GDS layout clips as input.
Clip samples from the ICCAD-2016 benchmark [23], based on
the 7nm process node, provide hotspot locations as locational
ground truth, obtained through EUV lithography simulation.
This allows for a direct validation of the interpretability
performance of our framework.

IV. EXPERIMENTAL DETAILS

A. Training Strategies

We use layout clips of size 1024 × 1024 nm2 as input.
Then, we convert the GDS layout to a graph using the
graph representation method proposed in Section III.A, which
reduces the memory consumption of the data by a factor of
5 to 12. The input graph data includes the adjacency matrix
A ∈ RB×N×N and node features h ∈ RB×N×Ih , where B
is the batch size, N is the maximum number of nodes in the



TABLE III
QUANTITATIVE EVALUATION OF INTERPRETABILITY PERFORMANCE.

N-hop Aggregation HA(%) FPR(%)

1 92.31 30.90
2 95.06 29.66
3 93.10 30.54
4 88.63 32.56
5 60.49 45.27

input graph data, and Ih = 5 is the feature dimension of the
input nodes.

In the hotspot detection classification task, we set K = 8
attention heads in the proposed GAT-based feature extraction
framework in Section III.B. We use the cross-entropy loss
function during training and evaluate the hotspot detection
performance. For the interpretability task, the objective func-
tion optimization is presented in Equation (9) in Section III.C.
Additionally, we set the learning rate lr = 0.001 and the
dropout rate Dr = 0.01. The Adam optimizer is used for
parameter updates with a weight decay of 5 × 10−4. Our
experimental framework is implemented using PyTorch, with
all models trained on 8 NVIDIA GeForce RTX A6000 GPUs
(48 GB memory).

V. EXPERIMENTAL RESULTS

A. Hotspot Detection Classification

To validate the effectiveness of our proposed framework,
we conducted lithography hotspot detection classification tasks
on the ICCAD-2012, ICCAD-2016 and ICCAD-2019 bench-
marks. Tables I, II and Figure 4 summarize the comparative
experimental results with recent state-of-the-art hotspot detec-
tors.

In the ICCAD-2012 benchmark, our framework achieved
a high detection accuracy of 98.47%, surpassing most exist-
ing baseline methods. In the more challenging ICCAD-2019
benchmark, our framework achieved state-of-the-art results
in both Acc and FA. In particular, on the ICCAD-2019-2
benchmark, our method significantly reduced the false alarm
rate to 15.7%, far outperforming most existing hotspot detec-
tors. This demonstrates the robust expressive capability of our
framework in capturing hotspot latent features, as well as its
superior detection performance.

In the ICCAD-2016 benchmark, we evaluated our method,
which achieved the highest accuracy of 94.26%, outper-
forming several state-of-the-art backbone networks, including
ResNet50 (R-50) [33], MobileNetV2 (M-V2) [34], ViT-16
[35], and Swin-Transformer Tiny (Swin-T) [36]. Meanwhile,
we maintain the false alarm rate at an acceptable level.

Moreover, ablation studies on the ICCAD-2012 benchmark
are conducted to demonstrate the importance of different
components within our framework. In addition to the full
pipeline, we provide three control groups: (1) w/o. GAT:
removal of multi-head GAT blocks, (2) w/o. Aggr1: removal
of the aggregation structure prior to the GAT blocks, and (3)

Fig. 6. Visual results of our hotspot interpretability on the ICCAD-2016
benchmark. The local components of the layout polygons responsible for the
hotspots are precisely localized, with the red annotations corresponding to the
explained subgraphs.

w/o. MLP: removal of certain MLP layers. As presented in Fig
5, the 18.37% increase in false alarms (w/o. GAT) confirms
its role in reducing FA. Accuracy drops of 35.50% (w/o.
Aggr1) and 13.12% (w/o. MLP) highlight the importance of
our feature aggregation structure in capturing latent topological
patterns.

B. Hotspot Interpretability

We pioneeringly introduce graph-based interpretability to
lithographic hotspot detection. We performed the interpretabil-
ity task in an unsupervised manner on the ICCAD-2016
benchmark, where the layout polygon components responsible
for the hotspots were accurately localized. The interpretability
module generates positional indices for each graph node.
Consequently, the resulting interpretability subgraphs can be
mapped to the corresponding rectangular components of the
layout polygons.

We provide visualized examples of hotspot interpretability,
as shown in Figure 6. Each row corresponds to a layout sam-
ple. The middle column presents the interpretability results,
which are the polygon component indices returned by the
graph decoder. Fluorescent green nodes represent polygons
that are part of a safe design, while red nodes indicate the
polygon components detected as causing hotspots. Table III
presents the quantitative evaluation results. The best inter-
pretability performance is achieved at a 2-hop aggregation
level, with the highest HA(95.06%) and lowest FPR(29.66%).

VI. CONCLUSION

In conclusion, our proposed Interpretable Graph Attention
framework not only achieves state-of-the-art performance in
hotspot detection but also provides a novel approach for
the interpretability of hotspot localization at the layout level.
This enables engineers to precisely identify the polygons re-
sponsible for hotspot formation, significantly reducing overall
detection costs.



REFERENCES

[1] M. J. Mitra, P. Yu, and D. Z. Pan, “RADAR: RET-aware detailed routing
using fast lithography simulations,” Proceedings of the 42nd Annual
Design Automation Conference, pp. 369-372, 2005.

[2] C. A. Mack, “Thirty years of lithography simulation,” Optical Mi-
crolithography XVIII, vol. 5754, SPIE, San Jose, California, USA, pp.
1-12, 2005.

[3] W. W. Y. Wen, J. C. Li, S. Y. Lin, et al., “A fuzzy-matching model with
grid reduction for lithography hotspot detection,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 33, no.
11, pp. 1671-1680, 2014.

[4] S. Y. Lin, J. Y. Chen, J. C. Li, et al., “A novel fuzzy matching model for
lithography hotspot detection,” Proceedings of the 50th Annual Design
Automation Conference, pp. 1-6, 2013.

[5] H. Yang, L. Luo, J. Su, et al., “Imbalance aware lithography hotspot
detection: a deep learning approach,” Journal of Micro/Nanolithography,
MEMS, and MOEMS, vol. 16, no. 3, pp. 033504-033504, 2017.

[6] Y.-T. Yu, G.-H. Lin, I. H.-R. Jiang, and C. Chiang, “Machine-learning
based hotspot detection using topological classification and critical
feature extraction,” in Proc. 50th Annu. Design Autom. Conf., 2013,
pp. 1–6.

[7] D. Ding, X. Wu, J. Ghosh, et al., “Machine learning based lithographic
hotspot detection with critical-feature extraction and classification,” in
2009 IEEE International Conference on IC Design and Technology,
IEEE, 2009, pp. 219-222.

[8] H. Yang, J. Su, Y. Zou, et al., “Layout hotspot detection with feature
tensor generation and deep biased learning,” in Proceedings of the 54th
Annual Design Automation Conference, 2017, pp. 1-6.

[9] H. Geng, H. Yang, L. Zhang, et al., “Hotspot detection via attention-
based deep layout metric learning,” in Proceedings of the 39th Interna-
tional Conference on Computer-Aided Design, 2020, pp. 1-8.

[10] Y. Jiang, F. Yang, B. Yu, et al., “Efficient layout hotspot detection
via binarized residual neural network ensemble,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 40, no.
7, pp. 1476-1488, 2020.

[11] D. Wu, S. Wang, M. Kamal, et al., “Enhancing layout hotspot detection
efficiency with YOLOv8 and PCA-guided augmentation,” arXiv preprint
arXiv:2407.14498, 2024.

[12] S. Goyal and J. C. Rajapakse, “Self-supervised learning for hotspot
detection and isolation from thermal images,” Expert Systems with
Applications, vol. 237, p. 121566, 2024.

[13] Y. Chen, Y. Wu, J. Wang, et al., “LLM-HD: Layout Language Model
for Hotspot Detection with GDS Semantic Encoding,” in Proc. 61st
ACM/IEEE Design Automation Conference, 2024, pp. 1-6.

[14] F. Scarselli, M. Gori, A. C. Tsoi, et al., “The graph neural network
model,” IEEE Transactions on Neural Networks, vol. 20, no. 1, pp. 61-
80, 2008.
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